

The Clear Solution®

Use of High Refractive Index Materials in Display and Lighting Applications

Z. Serpil Gonen Williams, PhD

VP Product Development

RADTECH 2018 05/08/2018

<u>Outline</u>

- Company Overview
- ZrO2 nanocrystals
- Dispersion properties
- Formulation Properties
- Nanocomposite Properties
- Applications of high refractive index materials in:
 - Displays
 - OLED lighting
 - LED lighting
- Material Requirements and Challenges
- Summary

The Clear Solution®

:: pixelligent

Company Overview

•

٠

Disruptive Technology

Key Markets Served

Customers & Partners

Manufacturing

Locations

Distributors

 50+ Leading Device, Advanced Materials, & Consumer Electronics Companies

Technology leader in

RI Nanocomposites

Next Generation High-

OLED Display, HD Display,

OLED Lighting, LED Lighting

- 5 MT Pilot Baltimore, MD
- 40 MT Full-scale, PA, 2H18
- Baltimore, MD HQ
- Iowa City, IA Sales
- Taipei, Taiwan Sales
- Korea, Japan, Taiwan

High Refractive Index Materials

- ZrO₂ Nanocrystals
 - High RI, transparent, not photoactive, hard
 - Uniform 5~10nm Spheres
- Highly Scaled Process
- Strong IP Position
 - 57 issued and pending patents

	Nanocrystal Dispersion		Formulation		Deposition Method		Device with Nanocomposite	
•	Enables High RI (1.8), transparent (>95%),	•	Broad Compatibility with various monomers	•	Compatible with commonly used deposition	•	Improves brightness of displays	
	solution processable formulations	•	and polymers and curing methods Low viscosity		methods	•	increases light output of OLED and LED lighting	

Broad Compatibility

High Quality ZrO2 Dispersions

Nanocrystal Dispersion	Formulation	Deposition Method	Device with Nanocomposite	
---------------------------	-------------	----------------------	------------------------------	--

- Capped nanocrystals dispersed in solvent or monomer
- Many choices of capping agents depending on solvent/polymer
- No aggregation or settling

- Stable for years
- Low viscosity increase even at high loading of 75 wt%
- Transparent

ZrO₂ Nanocrystal Surface Modification

- Capping agents
 - improve dispersibility
 - Increases compatibility
 - Reduces surface effects
- Long capping agent
 - Low/loose packed surface coverage
- Short capping agent
 - High/dense packed surface coverage
- Functional capping agents
 - Crosslink into polymer
 - Acrylic, epoxy, other...
- Multiple capping agents
 - Can control ratio of capping agent to crosslinker density

<u>Capping Variations and Impact on RI – PixClear® 4pack</u>

- For the cross-linking materials: PCPR has higher acrylic cross-link capping resulting in greater substrate adhesion, hardness and better performance with processing chemicals
- PCPB-2 has higher dispersibility capping leading to higher RI nanocomposites
 *RI at 450 nm with up to 90wt% loading measured by ellipsometer using base polymer with 1.58 RI at 450 nm

ZrO₂ Nanocrystal Dispersion Properties

- Monodisperse with 99.99%
 of particle diameter < 30nm
- Viscosity remains low over 50-75wt% loading range
- Tunable refractive index and formulation options derived from suite of capping agents
- Long shelf life = 6+ Months

Scaled Manufacturing

Frost & Sullivan 2017 Manufacturer of The Year

- Precursor Readily available, multiple vendors
- Equipment Standard equipment and processes in custom configurations. Available from multiple suppliers
- Process Uses standard proven wet chemistry processes
- Technology Very repeatable and robust with process recipes transferred from engineering to pilot scale
- Cost –Competitive total costing in target markets
- Environmental Compliance Fully TSCA and REACH compliant

Consistent Batch Quality

High RI Formulations

Nanocrystal Dispersion	Formulation	Deposition Method	Device with Nanocomposite	
---------------------------	-------------	----------------------	------------------------------	--

- Curable liquid with capped nanocrystals + polymer/monomer + additives
- Solvent free or solvent containing
- UV curable
- Transparent or with scatterers
- Need to meet desired requirements

 viscosity, shelf life, cure conditions, purity, surface tension, uniformity, repeatability ...
- Compatible with formulation manufacturing

Characteristics of HRI Enabled Materials with ZrO₂ nanocrystals

High RI, High Transmittance, and Smooth Surface

Calculated Nanocomposite RI

- RI increase depends on the starting RI of the polymer
 - Each line represents a different base polymer with RI at 400nm listed in the legend
- Composites converge on theoretical maximum of 1.9 RI
 - RI of pure capped nanocrystals at 400 nm

Other Properties: High Dielectric Constant Film

TEM Images of ZrO₂ Film and Nanocrystal

- Bulk ZrO_2 has a dielectric constant between 13 to 24.
- At loading > 50wt% have dielectric constants above common dielectric materials (e.g. SiO2 = 3.9) can be attained
- A 2-µm film has high transparency (> 95%) over the entire visible light range, uniform nanocrystal dispersion in the film.

Nanocomposite Deposition

Nanocrystal Dispersion	Formulation	Deposition Method	Device with Nanocomposite	
---------------------------	-------------	----------------------	------------------------------	--

- Inkjet printing
- Slot die Coating
- Imprint Lithography
- Spin-coat
- Screen printing
- Dispense
- Spray coating
- Others

Ink Jettable High RI Nanocomposites

- Ink-Jet Printing is a key technology for OLED Display
 - Opens major opportunities based on integration with customer manufacturing processes
- Ink formulation with ZrO₂
 - Long pot life without clogging
 - Good uniformity for 'blanket' films
 - Testing larger scattering particles and ZrO₂ together
- Deposition on glass substrates
 - Uniform films
 - Test patterns
 - Drop arrays

FujiFilm Dimatix DMP 2800

Enabling innovative devices with Nanocomposites

- High refractive index needed for efficient light extraction
- Solution processable needed to meet cost and quality targets
- Displays High RI ZrO2 enable significantly higher light extraction, higher brightness, improved operating efficiencies for OLED, LCD and reflective displays
- OLED lighting increases lumen-per-watt by 100%+ in OLED lighting with a high RI internal light extraction layer
- LED lighting delivers 5-10% lumen gain in LEDs by increasing the RI in silicone
- Less waste heat
- Longer lifetime

Process Changes Occurring in OLED Display

OLED Light Extraction Problem

- Total Internal Reflection traps most of the light in the device
- Different light extraction schemes vary in how and where light is redirected
- SPM and substrate mode can be reduced by corrugation and surface control, respectively
- Waveguide mode (ITO/substrate interface) is where light should be redirected for maximum benefit

$$\eta = \eta_i X \eta_e X \eta_{ext}$$

 η_i : internal quantum efficiency η_e : electrical efficiency η_{ext} : light extraction efficiency

Potential Improvement

Light Extraction Technology is Important to achieve High Panel Efficiency

(The goal corresponds to an LER(Luminous Efficacy of Radiation) of 360 lm/W and a panel efficacy of 190 lm/W.) OLED Lighting Panel Loss channels and Efficiencies

Source: Solid-State Lighting R&D Plan by Department of Energy (June, 2016) DOE/EE-1418

- Electrical & Spectral Efficiency
 Almost developed
- Internal Quantum Efficiency
 - TADF, Phosphorescence for blue
- Extraction Efficiency
 - Optical material & structure design
- Similar efficiency improvement expected for OLED display

Improved light extraction increases display efficiency and the preferred method is solution processing

Display Applications

- Flexible or rigid substrate
- Solution processable
- Inkjet compatible
- Top or bottom emission display
- 95% transparency
- Improved scratch resistance

Microlenses approach for OLED Display Light Extraction

- Drawbacks of microlenses such as crosstalk or back-scattering can be addressed though optimized lens design and colored lens structures (Lens per pixel)
 - Distance "t"
 - Black matrix
 - Color coated HRI lens (or HRI lens on CF)
- Refractive index modulation and HRI gives greater design freedom through higher focusing power and increased light extraction
 - Capping layer
 - Encapsulation
- Scalability and simple fabrication of lenses can be achieved through solution processable HRI material

Concept with soluble HRI material

<u>Creating Lens Structures to Dramatically Increase</u> <u>OLED Display Efficiencies</u>

Side Profile: θ = 54°

(On soda lime glass)

Side Profile: θ = 26.0°

Uniform Lenses with HRI Formulation

Structured Substrate Approach

Smoothing layer deposited over structured substrate to form lens-like structures

HRI smoothing layer

OLED Lighting Applications

PixClear[®] Gen 1 internal light extraction ("ILE") materials provide a smoothing layer. Also included in the scattering formulation.

PixClear[®] Gen 1 ILE materials provide more than 100% increase in light output compared to control

 PixClear[®] silicone nanodispersions increase Refractive Index of Silicones from 1.4 to 1.65 to better match the index of LED chip and delivering lumen gains of 5-10%

Material Properties for Display Applications

- Solution processable materials are low cost, easier to deposit BUT:
- Have to achieve high level of performance
 - high RI
 - low O₂ and moisture permeability
 - solvent free and low viscosity preferred
 - high level of reliability
 - low outgassing
 - low dose UV curing
 - smooth surface
 - low particle defects
 - no pin hole

Achieving all requirements simultaneously is challenging!

Summary

- Pixelligent's innovation in nanocrystal dispersion enables high performance nanocomposites
 - High RI, transparent, solution processable
- Compatible with many deposition methods and device structures
- Results in brighter, more efficient Displays, and increases light output of OLED and LED lighting

Thank you

For Product Information, please visit: http://www.pixelligent.com/products/

For more technical details, read our white papers: <u>http://www.pixelligent.com/resources/</u>

Serpil Gonen Williams (VP Product Development): sgonen@Pixelligent.com Shree Deshpande (VP Business Development): sdeshpande@pixelligent.com